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Numerical Analysis of Waveguide Discontinuity
Problems Using the Network Model
Decomposition Method

Geyl Wen

Abstract —This paper presents an application of the network model
decomposition method to the analysis of arbitrarily shaped H- and
E-plane waveguide junctions. By using the polygon discretization tech-
nique introduced in [1], the waveguide discontinuity region, which is
surrounded by a metallic wall and the reference planes chosen, is first
discretized; then the topological model and the corresponding network
model for the waveguide discontinuity are established. In the formula-
tion, equivalent current sources connected to the nodes on the boundary
of the region have been introduced to replace the effect of the field
external to the region. The field internal to the region is approximated
by the nodal voltage distribution of the network model, which can then
be used to determine the scattering parameters of the waveguide junc-
tion. A diakoptic algorithm for the solution of the network model has
also been developed. To illustrate the applications and show the validity
of the method, numerical results for various H- and E-plane junctions
have been given and a favorable comparison has been made with other
existing theories.

I. INTRODUCTION

In an earlier paper, a method termed network model decom-
position (NMD) was presented for the solution of transmission
line problems. The object of the present paper is to describe the
application of the NMD method to the analysis of scattering by
H- or E-plane waveguide junctions. A topological model for the
waveguide discontinuityis first established by dividing the dis-
continuity region into polygonal subregions; the corresponding
network model is then formulated on the basis of the topological
model and the field equations. In the formulation, the field
internal to the waveguide discontinuity region is discretized and
represented by a nodal voltage distribution. The field external to
the region is replaced by equivalent current sources connected
to the boundary nodes, without affecting the field distribution
inside the region. A diakoptic algorithm is also developed for
the solution of the network models, by means of which the
computational efforts and computer core storage can be greatly
reduced.

To show the validity and usefulness of the network model
decomposition method, computed results are given for various
H- and E-plane waveguide discontinuities. In all cases studied,
the poswer conservation condition is satisfied to an accuracy of
+107°.
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II. ToroLOGICAL MODELS AND NETWORK MODELS

An arbitrarily shaped n-port waveguide junction is shown in
Fig. 1(a), where the reference planes T, (p=1,2,-- -,n) and the
metallic wall T, completely enclose the waveguide discontinuity
region (); d, is the width, a,, or the height, b, of the wave-
guide p for the H- or E-plane junction. The waveguide p is
assumed to be filled with dielectric of relative permittivity €,,,.

If the excitation by the dominant TE; mode is assumed, then
the waveguide discontinuity can be described by the following
equations [9]:

Vi +K2p=0 (1)
K2 =KZ2é, (2)
K§=wuye 3)
) €, {for H-plane junction)
' €, — ('n'/Koa)z (for E-plane junction)
E, (for H-plane junction)
= {Hz (for E-plane junction) ©)

where E, and H._ are the z components of electric and mag-
netic field respectively.

Following the procedure described in [1], the waveguide dis-
continuity region is first discretized by using polygon discretiza-
tion techniques (Fig. 1(b)). Then the topological model for the
waveguide discontinuity problem can be established (Fig. 1(c)).
The set of all the oriented branches and the incidence matrix of
the topological model will be denoted by S, ={b;,b,, " ,b,}
and A ={a, } respectively. Then we have the equivalent form of
Kirchhoff’s voltage laws as follows:

U,= ATV (6)

where V=_(¢,,9,,"* ', o5)" is the node-to-datum voltage vector;
¢, is the value of ¢ at node n, (k=1,2,---,N); and U, is the
branch voltage vector.

Making use of the approximation introduced in [1], the node
equation for an interior node #; can be expressed in terms of
the incidence matrix A as
b

Z Al =0
I=1

€k
Z akl,Yk,”lL =
=1

(M
where u; is the branch voltage, i,, the branch current and Y,
the branch admittances:

YV, =—K S,

Yk, = (plflqt+qtpl)/ mony

- We now construct the node equation for a boundary node.
The dual clement G, of a boundary node #n, is shown in [1,
fig. 2(b)]. The following relation can then be derived in a similar
way:

(3)

e —1 9
@
—dT
1=2 pt*lqulan
do N
o Zars ﬁdr+K2ff ¢ ds
ap, R Dep—14., 01 G
(4
[ ——dr+ [ _——ar-o (9)
nrdy on ngde, n
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Fig. 1. (a) An arbitrarily shaped waveguide discontinuity. (b) A poly-
gon discretization scheme. (c) The topological model. (d) The network
model.
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We now introduce a current source i, which is defined by

de do
akloisk=-f__dr_ '_dF. (10)
neq, ON Nide, on
Then (9) may be approximated by
€ b
)y Qg Ve Uy + gy bop = Y Apiip =0 (1)
=0 =1
where
Yko = - Iézsk
Yk,=(1’:_—E+‘E)/mi”k> i=23,",¢—1
Ykl =E)E/mlnk Ykek=pek~1qek/meknk (12')
Introducing the branch current vector I, =(i,1,ip0," " *5ipp) 7
(7) and (11) can be expressed in matrix form as
Al =0 (13)

which is a standard form of Kirchhoff’s current law.

All current sources introduced above are connected only to
the boundary nodes. They may be regarded as the equivalent
current sources which replace the effects of the field external to
the waveguide discontinuity region . For an E-plane junction,
the potential function ¢ must satisfy the boundary condition
d¢ /dnlr, = 0. So we have iy = 0 from (10) for a boundary node
on I'y. For an F-plane junction we have golro = 0. Hence the
boundary nodes on I’y are all grounded and again we have
i,,= 0. Therefore only current sources which are connected to
the nodes on reference planes are nontrivial.

III. EvaLvatioNn oF EQuivALENT CURRENT SOURCES

Assuming that the dominant TE,, mode of unit amplitude is
incident from the waveguide g (g=1,2,---,n), the potential
function ¢ on I‘p (p=1,2,--+,n) may be expressed as

e (2@, y@) = i A(’::)e—fﬁfrf’x(p)f’;p)( y®)

m=1

+ 5pqejﬁl(q)1x(q)f1(q)(y(q)) (14)

where the normalized basis functions take the form

172 (»)
G, _ m-1ymwy
fif”( y(p)) =2t cos L_ (15)
b, b,
1/2
w_ | g2 7\* [(m-D=x 2 16
ﬁm - 0€rp ap bp ( )
for an E-plane junction and
2 172 mwy(”)
fyg[ﬂ)( y(l’)) = | sin — (17)
a, a,
mm\? e
B;(‘rf)—__ ngrp_ (—-—) :l (18)
ap

for an H-plane junction, respectively, and §6,, is the
Kronecker 8.
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Fig. 2. Standard branch.

Substituting (14) into (10), we obtain

iR =ag, L IBWARID (k)= j25,,87I (k) (19)

m=1

where the expansion coefficients A2 are
d
A(nin :/(‘) p¢(p)( xPr =0, y(m)f&p)( y(p)) dy, m=1,2,---

(20)

and

(k) = f__frglp)( Y dyP. (21)
q149e;,
From (15) or (17), we have I\”(k)= O(m 1) by a direct compu-
tation.

Let the number of nodes on I, be denoted by n'”. The
potential function ¢’ can be approximated by a constant,
chosen as @{?’, over the integration interval 19, Then the
expansion coefficients are

d
A(nl;) = f() F‘P(p)( xP) = 0, y(”))f,;p)( y(p)) dy(p)
2

=Y [

go(”)(x(”) =0, y(p))f’(np)( y(p)) dy(p)
I=1"919¢,

n?”

= X 1)
=1

(m=1,2,--+). (22)

Introducing the above expression into (19), we obtain

nm
i =3 aifPei? — j28,,B 1P (k) (23)
=1
where
af =ay, X IBPLP(DNLP(k). (24)
m=1

A system of algebraic equations may be obtained by letting
k=1,2,---,1'" successively in (23), which can then be ex-
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Fig. 3. (a) An E-plane step and its discretization scheme. (b) Magni-

tude of reflection coefficient.

pressed in matrix form as

1(p)=A(p)V(p)+C(p) (25)
where A(P)={aijp)}. I(p)=(l§i)), i(sgj,"',iiﬁ()p))T, and VP =
(@7, 0, -, o B))T are the current source vector and the
node-to-datum voltage vector on I, respectively. C(? =

— j26,,, BT, I{12), - - -, I{P(nP)T will be referred to as
the excitation vector on T'(P.

IV. Diakorrics

The standard branch of the network model is shown in Fig. 2.
The branch relation may be expressed as
Ib = YUb + IS
(26)
U,=2Z(1,—- 1 v)

where Z = diag(Z,,Z,, -+, Z,) and Y = diag(Y,,Y,," * :,Y,,) are
branch impedance and admittance matrix respectively, and I, =
(iypign, i) is the current source vector. Following the
standard procedure described in [1], we obtain the diakoptic



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 10, OCTOBER 1991

a I_‘g FZ a
't
a
(a)
o —— Ref, [4]
1.0}F
) 532
\'Su |-
~aii>-
0.0}
1.0 Kpa 2.0
(b)

Fig. 4. A T junction and its discretization scheme. (b) Power reflection
and transmission coefficients of the T junction.

node equation as follows:

Ymi/l+Alllbt=~AriIsrn i=1,25'”,K

K
LAY, -Z1;=0 (27
i=1 ‘

where Y,,= A,,Y,;A%; A, Y., V,, and I are the reduced

incidence matrix, branch admittance matrix, node-to-datum volt-
age vector, and current source vector of the ith component part
GR;; and A,, is the reduced incidence matrix of GR, with the
tearing branches.

Assuming that all boundary nodes on I, are inside part GR;
and the remaining nodes of GR; are either inside €} or on T},
Then the vector V, can be decomposed into the form V,=
(V) V1T, If the numbering of the branches containing the
current sources is from b,(1) to b,(n(P)), then the current source
vector I; can be expressed in the form

07y M 0 0

. AP [
0 bi(n(p)) 0 0

r o
Isz_

P . =
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Fig. 5. (a) An inhomogeneous junction and its discretization. (b) Mag-
pitude of reflection coefficient. (c) Magnitude of transmission coeffi-
cients.

from (25). Substituting the above expression into (27), we obtain

K
{z,+ EA,T,[mA,,A:]*A”}I;
i=1

K
= - ¥ ALY, + 4,417 4,C, (29)

i=1
from which the tearing branch current I, can be determined.
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The node-to-datum voltage vector ¥V, can then be found by using
the relation

V;'=_[Ym+AriA:]_1[Arth+Att[lg]' (30)

The solutions of ¢ on I, allow the determination of the
scattering parameter §,, of the TE;, mode as follows:

S, = fdn(p(m( P = 0, y(P) P @) dy® 1 (31)
0
B%p)é\rq v d
e\ pie,, [Fe(x7=0,yP) FP(y?) dy” (32)

In (32), both €,, and €, should be replaced by 1 for H-plane
junctions.

V. NumMmEericaL REsuLTs

To demonstrate the validity and effectiveness of the method,
computed results for various H- and E-plane waveguide discon-
tinuities have been obtained and compared with other theories
available. In the analysis, the first six evanescent higher order
modes are used in (24).

Numerical results for two-port and multiport junctions are
given in Figs. 3 and 4. The NMD method is applicable to the
analysis of multimedia problems and can also be easily applied
to the frequency range in which waveguide propagates multi-
modes. Fig. 5(a) shows an inhomogeneous junction and its
discretization scheme. In this case the boundary conditions
Pair = Pictectric A0d 8¢ /Rl = — 3¢ /1| dietectric Should be taken
into account on the interface between air and dielectric. Fig.
5(b) shows the results of the magnitude of reflection coefficient
obtained by the NMD method and the moment method [3],
respectively, and good agreement is obtained. The NMD results
of the transmission coefficients given by Fig. 5(c) are quite
different from those of the moment method [3]. In the moment
method, the transmission coefficients of the higher order modes
are not zero at the cutoff values of ¢,. As a check on the
accuracy of our solutions, the total power sums P’ have been
evaluated and the power conservation condition is satisfied to
an accuracy of +107>. So the results given by the NMD method
are convincing.

V1. CoNcLUSION

In this paper a network model decomposition algorithm has
been developed which permits the scattering matrices to be
computed for arbitrarily shaped H- or E-plane junctions. Com-
puted results for various H- and E-plane junctions are also
given as a demonstration of the validity of the method. Our
discussions and results obtained indicate that the network model
decomposition method has the virtues of simplicity and general-
ity, and so is a powerful tool for the analysis of waveguide
discontinuity problems.
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Analysis of E-H Plane Tee Junction Using
a Variational Formulation

B. N. Das and N. V. S. Narasimha Sarma

Abstract —An analysis of an E— H plane tee junction taking the width
of the slot and wall thickness into account is presented. The parameters
of the three-port equivalent network are determined. The reflection as
well as transmission parameters are evaluated. A comparison between
theoretical and experimental results is presented.

1. INTRODUCTION

In the investigations on E— H plane T junctions reported in
the literature [1], the internal energy storage required for the
evaluation of impedance loading has been found by regarding
the coupling slot as a superposition of transverse and longitudi-
nal components. Hsu and Chen [2] have presented a method of
analysis which is not based on this concept. In the coordinate
transformation they use, there is no scope for taking the effect
of slot width into account. Further, in [2, eq. (8)] limits of
integration were not properly taken. In the method suggested by
Stevenson [3] and used by Elliott et al. [4] the expression
involves a singularity, which, it is suggested, should be avoided
for better accuracy. But the method for avoiding the singularity
is not indicated.

In the present work, a three-port equivalent network for an
E - H plane tee junction is determined taking into account the
effect of waveguide wall thickness and considering the contribu-
tion of the dominant mode to the imaginary part of the self-
reaction.

From a knowledge of the equivalent network parameters, the
net impedance loading, reflection coefficient, and coupling are
evaluated for an £—-H plane tee junction. A comparison be-
tween theoretical and experimental results is also presented.

II. ANALYSIS

The inclined slot-coupled E-H plane tee junction together
with the coordinate system is shown in Fig. 1. The three-port
equivalent circuit of the junction is shown in Fig. 2. For a
matched termination at port 3, the variational expression for the
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